NIH HPC Systems

The NIH Biowulf Cluster —
Scientific Supercomputing

Steven Fellini Susan Chacko
sfellini@nih.gov susanc@hpc.nih.gov

staff@hpc.nih.gov
NIH HPC Staff, CIT
Dec 11-12, 2017

Slides available at https://hpc.nih.gov/training/

Monday

Introduction
Why use Clusters/Biowulf?

Administrivia: Accounts & Passwords, Connecting
to Biowulf; Email

Cluster Basics & Concepts

Biowulf architecture & hardware configuration
Environment modules

Data Transfer & Storage, Snapshots
Introduction to the batch system

susan

Tuesday

Swarm

— Swarms of single-threaded, multi-threaded, auto-
threaded and parallel jobs

Partitions

Walltimes, local disk, backfill scheduling, GPUs
Monitoring your jobs

Job dependencies

Parallel jobs

Containers

The NIH HPC Core Facility (Biowulf)

Central scientific compute resource
managed by NIH HPC staff (CIT)

Funded by NIH Capital Investment Fund
Available to all NIH intramural scientists
Production facility: high availability, high
data durability

Large scale: 90,000+ processor cores; 14
Petabytes storage capacity

Enabling research not otherwise possible

General purpose scientific computing
(not dedicated to any one application
type)

Cited by 380+ publications in 2016

NIH HPC Core Facility
hpc.nih.gov

Helix: Single shared system: 128 CPUs & 1 TB memory.
Sandbox for Linux practice, file management, lightweight
computations, interactive graphics, specific licensed software
(e.g. Comsol)

Felix (NIMH only)
Helixweb: web applications (helixweb.nih.gov)
Sciware: run apps on your desktop (e.g. Matlab) (sciware.nih.gov)

Biowulf Cluster: High performance computing
For most computational jobs.

Biowulf & Helix run the
Linux Operating System

RHEL/Centos 6, soon to be RHEL/Centos 7
100% of the Top500 supercomputers run Linux

OPERATING SYSTEM FAMILY / LINUX

System Count

600 500
--- The List.
450
300
150
0
2000 2005 2010 2015
List Count System Share (%)
Nov 2017 500 100

Jun 2017 498 99.6

The List.

http://top500.org

(Nov 2017)

Rmax Rpeak Power
Rank Site System Cores (TFlop/s) (TFlop/s) (kW)
65 Universitaet Mainz Mogon Il - NEC 49,432 1,967.8 2,800.9 657
Germany Cluster, Xeon Gold
6130 16C 2.1GHz,
66 National Institutes of Health Biowulf - Apollo 2000 66,304 1,966.1 2,491.4
(NIH] Gen 8/9, Xeon
United States E5-2680v4/E5-2695v3
14C 2.4GHz, Infiniband
FDR
HPE
67 Japan Atomic Energy Agency SGI ICE X, Xeon 60,240 1,929.4 2,409.6 3,012

(JAEA]
Japan

E5-2680v3 12C 2.5GHz,
Infiniband FDR
HPE

Why would you want to use Biowulf?

e Large numbers of jobs (bioinformatics on
thousands of sequences)

* Large-memory jobs (whole genome assemblies)

* Parallel jobs with high-cpu demands (e.g.,
molecular dynamics on 1024 cores)

* Terabytes of data to process

... in other words, LARGE SCALE

Unsuitable for Biowulf...(or, why
bother?)

* Small numbers of jobs

* One dependent job after the other
* Interactive jobs, graphics etc.

... in other words, desktops can be pretty
powerful!

Class survey

Level of Unix/Linux experience?
HPC (Biowulf/Helix) account?
Ever used a batch system?

Your research application?

http://hpc.nih.gov

—

HPC e NIH

High-Performance Computing at the NIH

Status

Applications Storage User Guides

User Dashtoard

HowTo About

http://hpc.nih.gov/apps |—>

User Guides

—)

Announcements 1:'>

Allocated CPUs (K)

The NIH HPC group plans, manages and supports high-performance computing
systems specifically for the intramural NIH community. These systems include

Biowulf, a 90,000+ processor Linux cluster; Helix, an interactive system for short
jobs, Sciware, a set of applications for desktops, and Helixweb, which provides
a number of web-based scientific tools. We provide access 1o a wide range of
computational applications for genomics, molecular and structural biology,
mathematical and graphical analysis, image analysis, and other scientific fields.

Quick Links

¢ System Status

e How To...

« Application/D3 updates
* User Guides

* SquirrelMail

* Policies

* Training

e ContactUs

Biowulf Utilization
Monday, December 4th, 2017

Last24 hrs
71,121 jobs submitiec
43,308 jobs completed
1,516,083 CPU hrs used

21 NIH Institutes
137 Prircipal Investgators
233 users

Announcements

o SCHEDULE UPDATE: Discontinuing SSH to
Helix from Cutside the NIH Network AND Helix
Email to be Retired {Nov 29th 2017)
Reminder: Python in HPC seminar Thursday
Nov 30 {Nov 29th 2017)

Upcoming Biowulf classes {Nov 27th 2017)
REMINDER: Walk-In Consult with HPC staff
Wed 15 Nov (Nov 14th 2017)

Walk-In Consult with HPC staff Wed 15 Nov
(Nov Bth 2017}

REMINDER: Seminar today - Effective use of
the Biowulf batch system and storage systems
{Oct 30th 2017)

o NIH Biowulf Seminars: Making Effective use of
the cluster (Oct 24th 2017)

Recent Papers that used Biowulf & HPC Resources

(NI putlicatons)

Natural Language Processing for Large-Scale Medical Image Analysis
Using Deep Leaming

Hoe-Chang Shin, Le Lu, Ronald M. Summers

in Deep Leaming for Medical Image Analysis, Elsevier , (p405-421) (2017)

Excessive burden of lysosomal storage disorder gene variants
9 in Parkinson's disease
Robak, LA; Jansen, IE; van Roojj, J et al.
Brain , DOIZ/10.1093/brain/awx285 {2017)

4. * Insights into functions of the H channel of cytochrome ¢
oxidase from atomistic melecular dynamics simulations
""" Sharma, V; Jambrina, PG; Kaukonen, M; Rosta, E; Rich, PR;
Proc. Nati. Acad. Sci. U.S.A., DOI//10.1073/pnas. 1708628114 (2017)

I Cenventional and pioneer modes of glucocerticoid receptor
nteraction with enhancer chromatin in vivo
. Johnsen, TA; Chereji, RV; Stavreva, DA; Morris, SA; Hager, GL;
Clarx, DJ;
Nucleic Acids Res. , DOIZ/10.1093/nar/gkx 1044 (2017)

A joint model for multivariate hierarchical semicontinuous data with
replications

Kassahun-Yimer, W; Albert, PS; Lipsky, LM: Nansel, TR; Liu, A
Stat Methods Med Res , DOI//10.1177/0962280217738141 (2017)

r~ f2, Phosphorylated Calmodulin Promotes PI3K Activation by
'ﬁf 8inding to the SH2 Domains
P Zhang, M; Jang, H; Gaponenko, V; Nussinov, R:

Biophys. J. , DOI://10.1016/].bpj.2017.09.008 {2017)

9 @) Prediction of Host-Pathogen Interactions for Helicobacter
7 k 3 pylori by Interface Mimicry and Implications to Gastric
Cancer
Guven-Maiorov, E; Tsai, CJ; Ma, B; Nussinov, R;
J. Moi. Bial. , DOI://10.1016/).jmb.2017.10.023 {2017)

Physiclogical and pathophysiological implicatons of PGE2 and the PGE2
synthases in the kidney

Wang, J; Liu, M; Zhang, X; Yang, G: Chen, L:

Prostaglandins Other Lipid Mediat. , DOI://10.1016
/j.prostaglandins.2017.10.006 (2017)

HPC @ NIH - Cortact

Disclaimer - Privacy - Accessibiity - CIT - NIH - DHHS - USA gov

1)

dny

glov <:I Social
media, RSS

yaeasas/nog-yiu-ody//

11

Accounts, passwords etc.

Accounts

u No sharing of accounts!

Apply for an account at
https://hpc.nih.gov/nih/accounts/account request.php

Pl approval needed.
S35/month flat charge — no additional usage fees

Accounts must be renewed each year.

13

Helix

Biowulf ———

Felix

Accounts

Same username (NIH login username)
Same password (NIH login password)
Same /home area

Same /data area

Need not have the same shell, but we
recommend ‘bash’ for both.

You may get locked due to inactivity on any
system: you can unlock yourself at
https://hpc.nih.gov/dashboard

(or send email to staff@helix.nih.gov)

Email

Mail from:

Biowulf batch system
Biowulf sysadmins > NIH email address as in NED

Notifications
Helix announcements

Cluster Basics
& Concepts

steve

Cluster Basics

4
3
.

AL
i cpus
Sl memory
network adapter

computer = node = blade

cluster of 13 nodes

torage)

..... S8 5lcalsiniz fileserver (disk s

network switch

.......

17

Hardware Terminology

Receptacle onthe
motherboard for one
physically packaged
processor (each of
which can contain
one or more cores).

Hyper-threading

One or more /
hardware contexts 4
& complete private within a single core.
set of registers, Each CPU has
execution units, and attributes of one core;
retirement queues managed & scheduled
needed to execute as a single logical
programs. processor by the OS.

Processor Functional Units

Bus Interface Unit

L1 instruction cache

!

Control Unit
Execution Unit
A+iB
ALU [~
FPU f—sf Y
B
MMX

Y

L1 data cache

.2 cache

19

(soj0A0 00.d) awi]

Hyper-threading

Hyper-threading Hyper-threading
disabled enabled

Each block represents
an execution unit in the
core

* blue 1* thread
* green 2™ thread

20

NIH HPC Initiative

Service Nodes (Login, etc) +
Data Transfer Nodes

"'-.'IOG

Compute Nodes
Phase 1

LU UL
LIRS LN TR
LLUALLL Bl L1111

Compute Nodes
" B lll

NFS Storage

EDR Infiniband
Core switches

Compute Nodes

Phases 2 & 3
EDR Infiniband fabric

Z3) __-—' GPFS Storage

$s° Center for
b | O W u If Information
AT THE NIH Technology

nodes

1080

1080

324

192

72

24

Compute Nodes (1/2)

processor, cores per node

Intel E5-2680v4
28 x 2.4 GHz

Intel E5-2695v3
28 x 2.3 GHz

Intel E5-2650v2
16 x 2.6 GHz

Intel E5-2650v2
16 x 2.6 GHz

Intel E5-2696v4
28 x 2.3 GHz
2 x nVIDIA K80

Intel E5-2650v2
16 x 2.6 GHz
2 x nVIDIA K20x

memory

256 GB

256 GB

128 GB

64 GB

256 GB

128 GB

network

56 Gb/s FDR Infiniband

56 Gb/s FDR Infiniband

10Gb/s Ethernet

56 Gb/s FDR Infiniband

10Gb/s Ethernet
56 Gb/s FDR Infiniband

56 Gb/s FDR Infiniband
10Gb/s Ethernet

nodes

20

224 (-)

362 (-)

302 (-)

Compute Nodes (2/2)

processor, cores per node

Intel E7-8860v4
72 x 2.2 GHz

Intel E7-8860v4
72 x 2.2 GHz

Intel E5-4620v2
32 x 2.6 GHz

Intel E5-2670
16 x 2.6 GHz

Intel X5660
12 x 2.8 GHz

Intel E5-5550
16 x 2.67 GHz

memory

3.0TB

1.5TB

1T7TB

128 & 64 GB

24 GB

24GB

network

56 Gb/s FDR Infiniband

56 Gb/s FDR Infiniband

10Gb/s Ethernet

1 Gb/s Ethernet

1 Gb/s Ethernet

1 Gb/s Ethernet

23

Buy-In Nodes

nodes processor, cores per memory network
node
160 Intel E5-2695v3 256 GB 56 Gb/s FDR Infiniband
28 x 2.3 GHz
24 Intel E5-2695v3 256 GB 56 Gb/s FDR Infiniband
28 x 2.3 GHz
2 x nVIDIA K80
86 Intel E5-2650v2 128 GB 10Gb/s Ethernet
16 x 2.6 GHz
96 Intel E5-2650v2 128 GB 10Gb/s Ethernet
16 x 2.6 GHz
64 Intel E5-2650v2 128 GB 10 Gb/s Ethernet
16 x 2.6 GHz

* Priority given to funding Lab/IC for 3 years
e Available via quick queue to all NIH users

funding

CCR (NCI)

CCR (NCI)

NIDDK

CCR (NCI)

NIMH

NIH Biowulf Stats

96r0Q+ omaop
! - 180,000+ CPUs
I/ ~1.3 MW, 350T cooling

Hands-on
Connecting to Biowulf

Macs/Linux: ssh your-username@biowulf.nih.gov
Windows: open a putty session to biowulf.nih.gov

e Use your own username/password.

e If you don’t have an account, ask the instructor
for a student account.

Use of Biowulf’s login node

Submitting jobs
Editing/compiling code
File management

File transfer

Brief testing of code or debugging (under 20 minutes
cpu time)

Do not run compute jobs of any kind on
the login node!

root

To: | @biowulf2.nih.gov

No compute intensive processes on Biowulf login node

Compute or large memory jobs are not allowed on the Biowulf login node.
Such jobs can hang the login node and/or seriously affect all users.
If you persist in running such jobs, your account will be locked.

Please use batch or allocate an interactive node if needed. Here 1is
how easy it is to get a dedicated interactive session:

% sinteractive
Process terminated:

PID USER NI VSZ RSS S %CPU %MEM TIME COMMAND
23583 N @ 5973256 5463320 R 96.9 4.4 00:01:44 bedtools sort -i KZ946_CLP.bed

Environment Modules

* Dynamically set up environments (paths, library
locations, etc.) for different applications

* One easy command for setup (not shell-
dependent)

* https://hpc.nih.gov/apps/modules.html

&

Susan

MOC
MOC

MOC

What modules exist?

e avalil
e avail [appname|string|regex]
e —d (show only default versions)

&

Load a module

module load appname
module load appname/version

See loaded modules

module list

&

Unload a module

module unload appname

module purge (unload all modules)

Personal modules

module use --append ~/mymodules

module use --prepend ~/mymodules F{*Q(

Examine a module

module whatis appname

module help appname

module
module

display

display

show

show]

appname
appname/version

"f*; ,

=S, 2 2 2 2

Convenient shorthand

1 STAR
1 -STAR
| STAR -bwa

cmd

modu
modu
modu

load
bwa

le 1list
le load STAR

le unload STAR

STAR and unload

module cmd

Hands-on (modules)

module avail -d

module avail star

echo SPATH

module load STAR

echo SPATH

module list

ml —-STAR

echo SPATH

module display bedtools

vy vr Ay W0

Note how your SPATH changes when a module is loaded
or unloaded.

Data Storage and Data Transfer

——

ﬂpu & PHI data

NIH HPC users are forbidden from transmitting or storing any
Personally Identifiable Information (Pll, e.g. patient data
containing names or social security numbers) or Protected
Health Information (PHI) data anywhere on the NIH HPC
systems, including their /home, /data, and any group (shared)
/data directories.

Controlled access data such as dbGaP data can be stored on
the systems, but it is the responsibility of the user to fulfill all
requirements of the agreement with the database provider.

https://hpc.nih.gov/policies

Disk storage

Location Creation Backups? Amount of Accessible
space from (*)
/home Network with HPC snapshots & 8 GB B, H, C
fileservers account tape (quota)

(*) H = helix, B = biowulf login node, C = biowulf compute nodes

Most /data directories are on high performance
parallel filesystems (GPFS)
(14 PB and climbing)

Biowulf FileSystems

n Use /data/username, not /gs1/users/username

/spinl (NFS)
/gs2 (GPFS)
/gs3 (GPFS)
/gs4 (GPFS)
/gs5 (GPFS)
/gs6 (GPFS)
/gs7 (GPFS)
/gs8 (GPFS)

/data

How to check quota and usage

$ checkquota

Mount Used Quota Percent Files Limit
/data: 125.8 GB 500.0 GB 25.16% 16529 31129581
/home : 2.4 GB 8.0 GB 30.37% 52888 n/a

ObjectStore Vaults
teacher: 44 .4 GB 465.7 GB 9.00% n/a n/a

Quotas and shared directories

* Quota increases for /data
* Shared data directory requests

hpc.nih.gov/dashboard
-> ‘disk usage’ tab

Hands-on (disk storage)

Simple commands

ls -la /home/SUSER (check contents of your /home area)

ls -1 /data/SUSER (check contents of your /data area)
checkquota (check your disk space usage/allocation)
mkdir /scratch/S$SUSER (create a directory in /scratch)

cp /home/SUSER/file /scratch/SUSER/ (copy a file to your /scratch dir)

Copy the scripts/data for this class to your own area

hpc-classes biowulf

(Copy takes about 4 mins — be patient. You should now have a
directory /data/SUSER/hpc-classes/biowulf containing 3.8 GB of
data)

Snapshots

/home 6 hourly, 6 nightly, 8 weekly
/data 2 daily, 1 weekly
/scratch no snapshots

n Snapshots are not backups

Hands-on (snapshots)

cd
1ls
cd
1ls
cd

Ccp

cp

—a

.snapshot

Nightly. [date]
somefile /home/SUSER

-p somefile /home/S$SUSER

(cd to your /home area)

(can you see the .snapshot directory?)
(cd to the snapshot in that area)

(see what snapshots are available)

(cd to a specific snapshot)

(copy a file from that snapshot to /home)

(to preserve timestamps and permissions)

Best Practices for Storage

Submitting a swarm without knowing Run a single job, sum up the output
how much data it will generate and tmp files, and figure out if you
have enough space before submitting
the swarm.
Directory with 1 million files Directories with < 5,000 files.
Each collaborator having a copy of Ask for a shared area and keep shared
data on Biowulf files there to minimize replication.
Using Biowulf storage for archiving. Move unused or old data back to your
local system.
T ——

Object Storage

e “Web Scale” storage

Scalable to billions of objects
Highly durable (Erasure encoding, dispersed over multiple sites)

e Different from file based storage systems

Objects are accessed by NAME, not PATH
Accessed via RESTful API: list, put, get, delete
Completely flat name space

No concept of directories, but “/” is a valid character in object
names

Various toolkits are available to manipulate objects (for
instance, obj command) (or write your own)

Data and metadata are stored together with the object

Use-cases for object storage

* Read-intensive workloads
— Object storage is much more efficient at reading than writing.

— An entire object has to be re-written for each change
* Computationally expensive to process and disperse the data
* Lots of over-writing

e Static data
— “Write-once, read-many”
— Data that doesn’t change often, but still used
— E.g. reference genomics files
* Limited archive?
— “Park” your processed data until the paper is published

To request an object store allocation...
https://hpc.nih.gov/nih/object_request.html

Typical Genomics Workflow

Generate
data on

sequencer

New aligner?
New data?
Submit to GEO?

Yes

9lobus Transfer

to Biowulf

Align and QC against
a genome

'

Variant calling
RNAseq quantitation
Peak calling....

against BAM files

Compress/Move
the Fastq files to
the object store

Pull data from
object store and
reprocess as
desired

Upcoming Class...

The NIH HPC object store

Date: Jan 9, 2018

Time:9am-1pm

Instructor: Tim Miller (NIH HPC staff)
Location: Bldg 12A, Rm B51.

Transferring files

gb globus

https://hpc.nih.gov/docs/globus.html

Transferring files

http://hpc.nih.gov/docs/transfer.html

Map your Helix /fhome or /data area on your
desktop (Helixdrive)

GUI File transfer clients (WinSCP etc.)
Commandline (scp, sftp, bbcp)

Remember: Windows files have Ctrl-M characters as
linefeeds (dos2unix to fix the file)

L

Web Proxy

Allows limited Internet access from compute
nodes

Transparent for programs using HTTP_PROXY,
HTTPS PROXY, RSYNC_PROXY or FTP_PROXY
environment variables

Transfers through Data Transfer Nodes
wget, curl, Iftp, rsync, git clone

(NCBI SRAToolkit, Hisat)
Aspera (ascp) transfers: contact us

%

Sharing data with collaborators

https://hpc.nih.gov/docs/sharing _data.html

High Performance Data Transfers

e Data Transfer Nodes
e gridFTP
e Single Globus endpoint: nihhpc#globus

NIHnet Core Data Center
10-100 Gb/s TN N

“Connection to e 100 Gb/s
? Research Building
8 x 10 Gb/s

Connection to
Lab computer

The Batch System: SLURM

slurm

workload manager

Slurm is the workload manager on about 60% of the TOP500 supercomputers,

56
steve

Concepts 1: Interactive vs. Batch

Interactive
(e.g. your desktop or Helix)

Job 1
Job 2
—_— Job 3

Batch
System

gl

(e.g. Biowulf, most clusters, supercomputers

Concepts 2: SLURM Hardware Terminology

Receptacle onthe
motherboard for one
physically packaged

processor (each of

which can contain

One or more cores).

One or more
hardware contexts
within a single core.

& complete private
set of registers, Each CPU has
execution units, and attributes of one core;
managed & scheduled

retirement queues
needed to execute
programs.

as a single logical
processor by the OS.

Concepts 3: Processes & Threads

-

B
.

disk I

& memory B

@ o ®

2 programs (files) execute as
2 processes (total number of

threads = 2)

K

=

S

disk

1 program (file) executes as 1 process
running 2 threads each sharing the
process’s memory (total number of

threads = 2)

o
A process has a self-contained execution environment; each process has its own memory
space. Processes are often seen as synonymous with programs or applications.”

“Threads exist within a process — every process has at least one. Threads share the
process's resources, including memory and open files.”

SLURM calls processes “tasks”

59

Concepts 4: Binding

SLURM uses the Linux kernel to bind processes to cores

Example:

¢ 16-core node (32 CPUs)
e Submit jobs that allocate 1 core (2 CPUs)

Job 1: Application runs 1 thread, Result: 1 thread runs on 1 core
(50% utilization of the core)

Job 2: Application runs 16 threads, Result: 16 threads runon 1
core (800% overloading of the core!)

Kinds of Jobs on a Cluster

* Single-threaded apps e Shared-memory parallel apps (multi-threaded)

-

ANy

0

* Swarm of single-threaded processes e Swarm of multi-threaded processes

roltedfi

* Distributed-memory parallel apps

WO

61

Jobs on the Biowulf Cluster

Most (almost all) jobs should be run in batch

Two ways to submit batch jobs
— sbatch
— Swarm

Default compute allocation = 1 physical core
= 2 CPUs in Slurm notation

Default Memory Per CPU =2 GB
Therefore, default memory allocation = 4 GB

Submitting a simple serial job

#!/bin/bash

#

this file is myjob.sh

#

#SBATCH --job-name MyJob
#SBATCH --mail-type BEGIN,END
#

myprog -n 100 < infile

jobid

NOTES:
(1) sbatch exports your shell environment to the batch job

(2) Command line options can also be used as directives within
script (#SBATCH)

(3) Identify the jobid when reporting problems to staff

Output/error files

Slurm combines stdout and stderr into a single
file called slurm-<job number>.out

Default location: submission directory

Can be reassigned with

-—-error /path/to/dir/filename
—--output /path/to/dir/filename

Using modules in batch scripts

#!/bin/bash

load the latest version of bsoft
module load bsoft

load a particular version of bsoft
module load bsoft/1.8

cd /data/user/myjob
....some bsoft command.......

Other slurm commands

Command Purpose Pros & Cons

squeue Information about jobs Lots of options, odd
syntax

scancel Delete job(s) Only way to cancel your
jobs!

sacct Job accounting for Useful to get a list of jobs

completed jobs

you submitted recently
(default is ‘today’), odd
syntax

sjobs (Biowulf utility)

Info about running and
pending jobs

Informative but slow

Deleting Batch Jobs

scancel <jobid> <jobid> ..

Options
—--user
—-name
--state

Multiple ways of setting batch parameters

sbatch --job-name=MylJob jobscript

~ ~—

Command-line parameter

export SBATCH JOB-NAME=MylJob

#!/bin/bash \ Environment variable

#

this file is myjob.sh

#

#SBATCH --job-name MyJob <
#SBATCH --mail-type BEGIN,END
#

myprog —threads=8 < infile

Batchscript directive

Command-Line Parameter >
Environment Variable >
Batch script Directive

SUMMARY: Variables set by SLURM when a batch job runs

SSLURM_NODELIST Nodes allocated to the job

SSLURM_NTASKS No. of ‘tasks’ (usually MPI processes)
for this job

SSLURM_CPUS_PER_TASK Number of CPUs allocated to each
task. Often used for multithreaded
processes

SSLURM _JOB_ID Job ID of this job

69

Allocating compute resources with

sbatch
* —-mem
* —-mem-per-cpu
e --ntasks

e --cpus-per-task
e --ntasks-per-core
* --gres

* --time

Special case only...

e __exclusive

e _-constraint

Single-threaded app

Required Allocated

1 <4 GB sbatch jobscript 2 4 GB
1 M GB sbatch --mem=Mg jobscript 2 M GB
(M > 4)

Note: jobscript must always be the last parameter on the sbatch command line

susan

Hands-on
Submitting a single batch job

cd /data/SUSER/hpc-classes/biowulf/plink
more plink.bat

sbatch [--partition=student] plink.bat
squeue —u SUSER

sjobs

Which node is your job running on?

~ind the output file: Examine it for errors.
How many cores/CPUs were allocated?
How many cores/CPUs were used?

Multi-threaded app

Required Allocated

C threads | M GB sbatch --cpus-per-task=C C M GB
on C CPUs ——mem=Mg J ObSCI‘ipt (rounded
up to

nearest
2)

Default memory allocation for € cpus would be (C*2) GB

Multi-threaded app

Use SSLURM_CPUS _PER_TASK inside the script

#!/bin/bash

cd /data/mydir
module load hmmer
hmmsearch --cpu $SLURM CPUS PER TASK \

globinsd.hmm /fdb/fastadb/nr.aa.fas

#!/bin/bash

cd /data/mydir

module load mapsplice

mapsplice.py -1 Sp ds.1l0k.left.fg -2 Sp ds.l0k.right.fqg \

-p SSLURM CPUS PER TASK

Hands-on (multi-threaded Tophat)

cd /data/SUSER/hpc-classes/biowulf/bowtie
sbatch [--partition=student]--cpus-per-task=8 --mem=5g tophat.bat

Use ‘sjobs’ to see if the job is running.

Look at the tophat.bat script to see how the number of
CPUs (threads) is specified to tophat.

Why is this important?

Auto-threading apps

sbatch —--exclusive --cpus-per-task=32 --constraint=cpu32 jobscript

will give you a node with 32 CPUs.

Interactive compute Jobs

Reasons to use interactive nodes

» Testing/debugging cpu-intensive code
* Pre/post-processing of data

* Graphical application

 GUIl interface to application

Reasons not to use interactive nodes

* Easier than setting up a batch job

Interactive compute jobs

[biowulf ~]$ sinteractive

salloc.exe: Granted job allocation 22374
[cn0004 ~]$ exit

exit

salloc.exe: Relinquishing job allocation 22374

[biowulf somedir]$ sinteractive --cpus-per-task=4 --mem=8g
salloc.exe: Granted job allocation 22375
[cn0004 somedir]$S

[biowulf ~]$ sinteractive --constraint=ccr ..

(do not need --partition=student)

Note: your environment will be exported to the job by default.

Interactive compute jobs

* The maximum allowable number of cores
allocated to interactive jobs is 32 (64 CPUs).

e By default, the job will be terminated after 8
hours. You may extend this time to a maximum of

36 hours by using the ”--time" option to the
sinteractive command.

Hands-on (interactive batch jobs)

Ur Ur Ur U

S sinteractive

Once you are logged into a node:

cd /data/SUSER/hpc-classes/biowulf/freebayes
module load freebayes

freebayes —-f genome.fasta input.bam

exit

(no need for —partition=student, since you are submitting to the interactive partition)

Requeue Job?

sbatch --requeue default

or

sbatch —--no-requeue

Tuesday

Swarm

— Swarms of single-threaded, multi-threaded, auto-
threaded and parallel jobs

Partitions

Walltimes, local disk, backfill scheduling, GPUs
Monitoring your jobs

Job dependencies

Serial->swarm demo | | Parallel jobs
Containers

Job Arrays

A group of independent jobs, largely identical.

Examples:

* Processing 1000 images with AFNI

* Running Blast with 500 query sequences

* Aligning 50 genome fragments against hg19

Q: how to generate, edit or delete 1000 batch
scripts/jobs?
A: job arrays

Job Arrays

#!/bin/bash

cd /data/SUSER/mydir
tophat genome_index S{SLURM_ARRAY_TASK_ID}.fastq \
> S{SLURM_ARRAY_TASK_ID}.out

sbatch --array=0-31 myarray.sh

sjobs shows:

User JobId JobName Part St Reason Runtime Walltime Nodes CPUs Memory

Limitations of Job Arrays

Input files are usually not named 0,1,2....

Likewise, you probably don’t want your output
files/dirs called 0,1,2,....

Careful scripting required

Most batch systems have limitations on array
index, # tasks etc.

Swarm

(A flexible & convenient way to submit job arrays)

Submitting swarms of jobs with

i

this
#

myprog
myprog
myprog
myprog
myprog
myprog
myprog

S swarm

swdarm

file is cmdfile

—-param a < infile-a
-param b < infile-b
—-param ¢ < infile-c
—-param d < infile-d
—-param e < infile-e
—-param £ < infile-f
—-param g < infile-g
-f cmdfile

vV V. V V V V V

outfile-a
outfile-b
outfile-c
outfile-d
outfile-e
outfile-£f
outfile—-g

What does swarm do, exactly?

Creates a subjob for each line in your swarm
command file

Submits all subjobs as a single jobarray to
slurm.

Single jobid regardless of number of
commands.

Subjobs are identified by jobid arraytaskid,
e.g. 12345 1,12345 2,12345 4, ...

How swarm works

Swarm command file Batch scripts Nodes

/ H 1 (
prog.exe -parl > outl -— .) L

—> N
prog.exe —-par2 > out2 —

pProg.exe _par3 > out3 \ ------------ /_ J U

N
prog.exe —-par4d > outéd -
\ t VAS

4 commands (lines) in swarm command file
1 batch job with 4 subjobs

89

Swarm of single-threaded

Required

Processes

Allocated

1 per <15GB |swarm -f swarmfile 2 per 1.5 GB
process | per process | per
process process
1 per G GB swarm -g G -f swarmfile 2 per G GB per
process | (G > 1.5) process | process
1 per G GB swarm -g G -p 2 -f swarmfile |1 per G GB per
process | (G > 1.5) process | process

Swarm of multi-threaded
processes

Required Allocated

Tthreads | GGBper | swarm -t T -g G -f swarmfile | Tper G GB per

onTCPUs | grocess process | process
per

process

Default memory allocation: T*1.5 GB per process

Swarm of multi-threaded
processes

Use SSLURM_CPUS_PER_TASK inside batch script

mapsplice.py -1 segla.fqg -2 seqlb.fqg -p $SLURM CPUS PER TASK
mapsplice.py -1 seg2a.fqg -2 seg2b.fqg -p $SLURM CPUS PER TASK

mapsplice.py -1 seg3a.fqg -2 seq3b.fq -p $SLURM CPUS PER TASK
etc

Swarm of auto-threading.processes

swarm -t auto
-> gives you 32 CPUs, possibly overloaded

swarms

Single “job array” created (one job id, n subjobs)
The number of subjobs = number of commands
swarm expects bash syntax

Create complex/long swarm command files with
scripts

Swarms: complex commands

Example:

cd /data/$USER/mydirl; somecommand ; some other command
cd /data/$USER/mydir2; somecommand ; some other command
cd /data/S$USER/mydir3; somecommand ; some other command

Use semi-colons (;) to separate multiple commands on one line
Can use continuation character (\) to make long lines readable

Each line (set of commands) should be completely independent

Using modules in swarm scripts

Method 1:

bimg -verbose 7 -truncate 0,100 inputl.img outputl.img
bimg -verbose 7 -truncate 0,100 inputZ2.img outputZ.img
bimg -verbose 7 —-truncate 0,100 input3.img output3.img

Submit with:
swarm -f swarmfile --module bsoft/1.8.2

<

96

Using modules in swarm scripts

Method 2:
module load bsoft/1.8.2; \

bimg -verbose 7 -truncate 0,100 inputl.img outputl.img
module load bsoft/1.8.2; \

bimg -verbose 7 -truncate 0,100 input2.img output?Z2.img
module load bsoft/1.8.2; \

bimg -verbose 7 -truncate 0,100 input3.img output3.img
Submit with:

swarm —f swarmfile

St

’

£

97

Deleting a Swarm

To delete this swarm...

3479375 _0
3479375 _5
3479375 6
3479375 9
3479375 10
3479375 11
3479375 12
3479375 13

norm
norm
norm
norm
norm
norm
norm
norm

sSwarm
Swarm
swarm
sSwarm
Swarm
sSwarm
Swarm
swarm

S scancel 3479375

joeu
joeu
joeu
joeu
joeu
joeu
joeu
joeu

R 2-04:15:47
R 2-04:15:47
R 2-04:15:47
R 2-04:15:47
R 2-04:15:47
R 2-04:15:47
R 2-04:15:47
R 2-04:15:47

e =

L

cn0175
cn0297
cn0297
cn0304
cn0304
cn0257
cn0257
cn0257

Hands-on (swarm)

cd /data/SUSER/hpc-classes/biowulf/swarm
e Use ‘more’ to examine the file blat.swarm
e ‘WCc -1 blat.swarm’ will give you the # of commands

swarm [—-—-partition student] —-f blat.swarm --module blat

e How many jobs were created?
e Use ‘'sjobs’ to watch your jobs.

e Use ‘1s’ and ‘more’ to examine the output after the
swarm is done.

$ swarm —--help
swarm [swarm options] [gsub options]

Usage:

Usage: swarm

Swarm options

[swarm options] [sbatch options]

-f,--file [file]

-g,--gb-per-process

[float]

_t,

--threads-per-process

[int]/"auto"

_p,

--processes-per-subjob

[int]

-b,--bundle

--usecsh

_m,

--module

[int]

name of file with list of command lines to execute,
with a single command line per subjob

gb per process (can be fractions of GB, e.g. 3.5)
threads per process (can be an integer or the word
auto). This option 1s only valid for multi-
threaded swarms (-p 1).

processes per subjob (default = 1). This option is
only valid for single-threaded swarms (-t 1).

bundle more than one command line per subjob and run
sequentially

use tcsh as the shell instead of bash

provide a list of environment modules to load

prior to execution (comma delimited)
100

S swarm —--help [contd]
-—-no-comment

Swarm options

don't ignore text following comment character #

-c, —--comment-char [chr]

--logdir

--maxrunning

sbatch options:
-J, —--Jjob-name ([str]
-—-dependency [str]
-—-time [str]
-L,--licenses [str]
--partition [str]
--gres ([str]
--qos [str]

Other sbatch options

--sbatch [string]

use something other than # as the comment character

directory to which .o and .e files are to be written
(default is current working directory)

limit the number of simultaenously running subjobs

set the name of the job

set up dependency (i.e. run swarm before or after)
change the walltime for each subjob (default 1is
04:00:00, or 4 hours)

obtain software licenses (e.g. —--licenses=matlab)
change the partition (default is norm)

set generic resources for swarm

set quality of service for swarm

add sbatch-specific options to swarm. These options

will be added last, which means that swarm options

for allocation of cpus and memory take precedence.
101

Swarm bundles

For large swarms or swarms with short-lived threads (under 5-
10 minutes)

swarm =b 20 —f commandfile

creates a “bundle” (queue) of 20 processes per core

* Example: 8000 lines (8000 processes), -b 20 => 8000/20 = 400
jobs

e Swarm will ‘auto-bundle’ for command files with > 1,000
lines

Swarm command file

How swarm bundling works

prog.exe -parl > outl ———_—_____———”%>
prog.exe —-par2 > out2
prog.exe —-par3 > out3
prog.exe —-par4 > out4d
prog.exe -—-parbd > outb —>
prog.exe —par6 > outb
prog.exe —-par’/ > out’
prog.exe —-par8 > outs8
prog.exe —-par9 > outH —>
prog.exe —para > outa
prog.exe —-parb > outb
prog.exe -parc > outc ---§"“-~_~i>

Batch scripts

12 commands (lines) in swarm command file
1 batch job with 4 subjobs
Each subjob runs 3 commands sequentially

Nodes

~
G J/
4)

103

Quiz
What’s the difference between:

swarm -p 2 -f swarmfile
swarm -b 2 -f swarmfile

Answer

swarm -p 2 -f swarmfile

2 processes run simultaneously per core (1 process per CPU)

swarm -b 2 -f swarmfile

2 processes run sequentially per core (may still leave 1 CPU idle)

Hands-on (swarm bundling)

cd /data/SUSER/hpc-classes/biowulf/swarm
swarm [—--partition=student] -b 4 -g 4 -f blat.swarm \
——-module blat

How many subjobs were produced?

106

sbatch vs swarm

sbatch

swarm

Batch system submission command

Swarm uses sbatch in the background

Write your own batch scripts

Write a file containing a list of commands

Can be inconvenient for large numbers of
similar jobs

Very convenient for large numbers of
similar jobs

Easier to debug a failed job

Can be difficult to debug a failed subjob

Hands-on (swarm vs sbatch)

cd /data/SUSER/hpc-classes/biowulf/R

Compare the files R.bat and swarm.cmd
How would you submit each one?

More on Biowulf/Slurm Resources

steve

Partitions (Queues)

$ batchlim
Max jobs per user: 4000
Max array size: 1001

DefWalltime

MaxWalltime

Partition MaxCPUsPerUser
norm 6144
multinode 6272
turbo qos 12544
interactive 64
quick 6144
largemem 512
gpu 224
unlimited 128
student 32

08:00:00
02:00:00
04:00:00
02:00:00
UNLIMITED
02:00:00

1-12:00:00 (3 simultaneous jobs)

10-00:00:00
10-00:00:00 (16 GPUs per user)
UNLIMITED

04:00:00 (2 GPUs per user)

Show available compute resources

% freen

........ Per-Node ResourceS........

Partition FreeNds FreeCPUs Cores CPUs Mem Disk Features

norm# 0/388 6672/21728 28 56 248g 400g cpu56,core28,g256,ssd400,x2695,ibfdr

norm# 0/310 1642/9920 16 32 123g 800g cpu32,corel6,gl28,ssd800,x2650,10g

norm* 274/282 4406/4512 8 16 21g 200g cpul6,core8,g24,sata200,x5550,1g

unlimited 0/3 22/168 28 56 248g 400g cpu56,core28,g256,ssd400,x2695,ibfdr
unlimited 13/13 416/416 16 32 123g 800g cpu32,corel6,gl28,ssd800,x2650,10g

multinode 37/487 5686/27272 28 56 248g 400g cpub56,core28,g256,ssd400,x2695,ibfdr
multinode 3/186 486/5952 16 32 60g 800g cpu32,corel6,g64,ssd800,x2650,ibfdr

gpu 15/20 510/640 16 32 123g 800g cpu32,corel6,gl28,ssd800,x2650,gpuk20x

gpu 3/3 96/96 16 32 123g 800g cpu32,corel6,gl28,ssd800,x2650,gpuk20x, acemd
gpu 1/1 32/32 16 32 123g 800g cpu32,corel6,gl28,ssd800,x2650,gpuk20x,acemd,desn
largemem 2/3 148/192 32 64 1007g 800g cpu64,core32,gl1024,ssd800,x4620,10g

quick 1/93 1518/2976 16 32 123g 800g cpu32,corel6,gl28,ssd800,x2650,10g,ccr

quick 39/122 6432/6832 28 56 248g 400g cpub56,core28,9g256,ssd400,x2695,ibfdr,ccr
quick 12/16 880/896 28 56 248g 400g cpub56,core28,9g256,ssd400,x2695,ibfdr,gpuk80,ccr
quick 52/86 1822/2752 16 32 123g 800g cpu32,corel6,gl28,ssd800,x2650,10g,niddk
quick 1/63 32/2016 16 32 29g 400g cpu32,corel6,g32,satad00,x2600,ibgdr

quick 0/66 0/2112 16 32 60g 400g cpu32,corel6,g64,satad00,x2600,ibgdr

quick 62/63 1992/2016 16 32 123g 800g cpu32,corel6,gl28,ssd800,x2650,10g,nimh
quick 61/61 1952/1952 16 32 123g 400g cpu32,corel6,gl28,satad00,x2600,1qg

quick 64/64 2048/2048 16 32 60g 400g cpu32,corel6,g64,satad00,x2600,1g

quick 345/350 8380/8400 12 24 21g 100g cpu24,corel2,g24,satal00,x5660,1g

Submitting Jobs to Partitions

sbatch --partition=quick jobscript

swarm —--partition=quick swarmfile

Submitting Jobs to Partitions

You can submit to 2 partitions:

sbatch --partition=ccr,norm jobscript

and the job will run on whichever partition has the requested

resources.

CPU limits in partitions are cumulative, example for NIDDK user:
niddk (1024 cpus) + norm (6144 cpus) + quick (6144 cpus) = 13312 cpus

Walltime

The max time you expect your job to run

* All jobs have a walltime limit
e Default 2 hr walltime in norm (default) partition
* Specify walltime with

--time=d-hh:mm:ss

e.g. --time=12:00:00 (12 hrs)
--time=36:00:00 (36 hrs)
--time=2-12:00:00 (2 days, 12 hrs)

Increasing or decreasing walltime

newwall --jobid <job_id> --time <new_time spec>

Use Slurm’s email alerts to track job
walltimes and runtimes

sbatch --mail-type=BEGIN,TIME_LIMIT_90,END batch_script.sh

TIME_LIMIT_50 Job reached 50% of its time limit
TIME_LIMIT_80 Job reached 80% of its time limit
TIME_LIMIT_90 Job reached 90% of its time limit
TIME_LIMIT Job reached its time limit

Choosing a reasonably accurate walltime is important

Swarm & bundled walltimes

swarm -f swarmfile --time 2:00:00

\

Time for 1 command in swarmfile

swarm -f swarmfile --time 2:00:00 -b 20

\

Swarm will multiply 2 hrs * 20 and set each
job to have a walltime of 40 hrs.
(Error if > partition time limit)

“Unlimited” Partition

sbatch --partition=unlimited ..

* No walltime limit
* Very limited number of nodes available

How Jobs are Scheduled

Within each partition scheduled by priority
Priority primarily based on Fairshare

Fairshare is the number of cpu-minutes used
recently (half life of 7 days)

sprio command reports priorities of pending
(queued) jobs

Backfill job scheduling for parallel jobs

Why accurate walltimes are important (Backfill scheduling)

Backfill

2 hr -

Time
| hr -

CPUs 1 2 3 4 5 6 7 8 9 10 @

Another reason why accurate walltimes are important:
Maintenance window reservations

| |

Reservation end ==

[--wall=6:00:00 |

Reservation start == o
Job3 Job4 [-wall=24:00:00 |

~

q

/’ | --wall=8-00:00:00

o
--wall=7-00:00:00] \ /

O @

= Jobl = Job2)

Days until
Reservation set == S ¢= reservation
start

120

Local disk on node

4
3
.

T L

cpus
& memory

¢ disk

network adapter

computer = hode = blade

cluster of 13 nodes

bdisaniczie iz fileserver (disk storage)

L

network switch

,,,,,,,,

Local disk on node

e Local disk = /Iscratch

* (/scratch is central shared space)

* ‘freen’ will report disk size as a Feature (eg, ssd800 = 800GB
SSD disk)

e Jobs which need to use /Iscratch must explicitly allocate
space:
sbatch --gres=lscratch:500 ..

!

GB

e Read/write to /Iscratch/SSLURM JOBID (/Iscratch directory
not writable)

e [Iscratch/SSLURM JOBID deleted at end of job

More Best Practices for Storage

BAD

100 jobs all reading the same 50GB file
over and over from /data/SUSER/

GOOD

Use /Iscratch instead, copy the file
there, and have each job access the file
on local disk.

100 jobs all writing and deleting large
numbers of small temporary files.

Use /Iscratch instead, have all tmp files
written to local disk.

123

Hands-on (Iscratch)

sinteractive --gres=lscratch:2
(Requesting 2 GB of local scratch)

Once you are logged into a node:

cd /1scratch/$SLURM JOBID; 1s -1

cp -r /data/$USER/hpc-classes/biowulf/freebayes/
module load freebayes

cd freebayes

freebayes -f genome.fasta input.bam

exit

Question: once you exit the job, can you access the files on /Iscratch on the node?
What happens if you try to write to /Iscratch, instead of /Iscratch/SSLURM_JOBID?

124

Graphics Processing Units

48 nVIDIA K20x
48 nVIDIA K80 (CCR buy-in)
288 nVIDIA K80

125

HOW GPU ACCELERATION WORKS

Application Code

Compute-Intensive Functions |

L

Rest of Sequential
CPU Code

Molecular Dynamics

NAMD
Gromacs
Amber
Acemd
Charmm
Q-Chem

GPU applications

Image Analysis

Deep Learning

Relion

And Others...

SIFT
BEAST
Matlab

Caffe
TensorFlow
Digits

CPUs vs GPU

NAMD 2.12 ibverbs - STMV Benchmark

FDRInfiniband-28cpu/node
® GPUK20x-16¢cpu/node
2 0- GPUKk80-28cpu/node

1.5-

1.0-

days/ns

0.5-
0.4-

0.3

0.2

1 2 4 8 16 32
Number of nodes

128

GPU Nodes on Biowulf

#nodes GPU #GPUs/ #CPUs/ #CPUs/GPU
type node node slurm binding

s e s s

129

Allocating GPUs

sbatch --partition=gpu --gres=gpu:k80:1 jobscript

sbatch --partition=gpu --gres=gpu:k80:2 jobscript

[]

Resource Resource Count
Name Type Required even if 1

°*k20x (Max of 2 K20x
k80 4 K80)

(for student accounts, replace --partition=gpu with --partition=student)

Large Memory Jobs (>256 GB)

sbatch --mem=768g --partition=largemem ..

e 28 |large memory nodes
e Use large memory nodes for their memory,

not for their (144) cores u

1.5TB & 3TB nodes — can anyone here make use of these?
Is there a need for a 144-thread single-node job?

Licensed Software

e Only compiled Matlab code can be run as batch jobs

e All other Matlab jobs must be run interactively

e Use the ‘licenses’ command to see current status of licenses

susan

Example of batch job using license

sbatch --partition gpu --gres=gpu:k80:1 --license=acemd jobscript

Monitoring Batch Jobs

* Things to monitor
— Core (CPU) utilization
— Memory

 Tools for monitoring

— sjobs, squeue (show status of jobs)
— Jobload (show CPU & mem usage)
— Jobhist (show utilization after job ends)

— Dashboard https://hpc.nih.gov/dashboard
— (https://hpc.nih.gov/nih/student dashboard/)

e Users (you) are responsible for monitoring their jobs

134

Monitoring — show all jobs

% squeue

JOBID PARTITION NAME USER ST TIME NODES NODELIST (REASON)

22340 multinode stmv-204 susanc PD 0:00 128 (Dependency)

22353 multinode meme_sho susanc PD 0:00 128 (Dependency)

22339 multinode stmv-102 susanc PD 0:00 64 (Dependency)

22352 multinode meme_ sho susanc PD 0:00 64 (Dependency)
% sjobs

................ Requested.....ccceeeeieeeecccnccccnes

User JobId JobName Part St Runtime Nodes CPUs Mem Dependency Features Nodelist
susanc 22344 meme_short norm R 22:30 1 32 1.0GB/cpu (null) cn0414

susanc 22335 stmv-64 multinode R 0:54 4 128 1.0GB/cpu (null) cn[0413-0415]

Monitoring — jobload

5 Jobload -u username

JOBID TIME NODES CPUS THREADS LOAD MEMORY

Elapsed / Wall Alloc Active Used / Alloc

35268348 18:46:09 / 1-06:00:00 cnl278 56 28 50% 8.6 / 56.0 GB

18:46:09 / 1-06:00:00 cnl279 56 28 50% 8.5 / 56.0 GB

18:46:09 / 1-06:00:00 cnl280 56 28 50% 8.6 / 56.0 GB

18:46:09 / 1-06:00:00 cnl281 56 28 50% 8.3 / 56.0 GB

18:46:09 / 1-06:00:00 cnl1282 56 28 50% 7.9 / 56.0 GB

Nodes: 5 CPUs: 280 Load Avg: 50%

35274295 18:21:51 / 1-06:00:00 cnl1297 56 28 50% 9.6 / 56.0 GB

18:21:51 / 1-06:00:00 cnl298 56 28 50% 9.4 / 56.0 GB

18:21:51 / 1-06:00:00 cnl1299 56 28 50% 9.6 / 56.0 GB

18:21:51 / 1-06:00:00 ¢cnl1300 56 28 50% 9.3 / 56.0 GB

18:21:51 / 1-06:00:00 cnl1301 56 28 50% 8.8 / 56.0 GB

USER SUMMARY
Jobs: 2 Nodes: 10 CPUs: 560 Load Avg: 50%
s Jobload -3j 35274295
JOBID TIME NODES CPUS THREADS LOAD MEMORY

Elapsed / Wall Alloc Active Used / Alloc
35274295 18:23:34 / 1-06:00:00 cnl297 56 28 50% 9.6 / 56.0 GB
18:23:34 / 1-06:00:00 cnl298 56 28 50% 9.5 / 56.0 GB
18:23:34 / 1-06:00:00 cnl299 56 28 50% 9.6 / 56.0 GB
18:23:34 / 1-06:00:00 cnl300 56 28 50% 9.3 / 56.0 GB
18:23:34 / 1-06:00:00 cnl301 56 28 50% 8.8 / 56.0 GB

Nodes: 5 CPUs: 280 Load Avg: 50%

Monitoring - jobload

Parallel MPI jobs may show “0%” load — this is an (undesirable) "feature”

$ jobload -u abramyanam

JOBID TIME NODES CPUS THREADS LOAD MEMORY
Elapsed / Wall Alloc Active Used / Alloc
35329432 1-13:18:36 / 10-00:00:00 cnl351 56 0 0% 0.0 / 56.0 GB
1-13:18:36 / 10-00:00:00 cnl1352 0 0 0% 0.0 / 0.0 GB
1-13:18:36 / 10-00:00:00 cnl1353 0 0 0% 0.0 / 0.0 GB
1-13:18:36 / 10-00:00:00 cnl354 0 0 0% 0.0 / 0.0 GB
1-13:18:36 / 10-00:00:00 cnl355 0 0 0% 0.0 / 0.0 GB
1-13:18:36 / 10-00:00:00 cnl356 0 0 0% 0.0 / 0.0 GB
1-13:18:36 / 10-00:00:00 cnl357 0 0 0% 0.0 / 0.0 GB
1-13:18:36 / 10-00:00:00 cnl1358 0 0 0% 0.0 / 0.0 GB
1-13:18:36 / 10-00:00:00 cnl1359 0 0 0% 0.0 / 0.0 GB
1-13:18:36 / 10-00:00:00 cnl1360 0 0 0% 0.0 / 0.0 GB

jobhist

lbiowulf ~]s jobhist 22343

JobId : 22343

User : susanc

Submitted : 20150522 08:59:54

Submission Dir : /spinl/users/susanc/meme

Submission Command : sbatch --depend=afterany:22342 --partition=multinode --ntasks=2

-—ntasks-per-core=1 meme short.slurm

Partition State AllocNodes AllocCPUs Walltime MemReq MemUsed Nodelist
multinode COMPLETED 1 32 01:43:58 1.0GB/cpu 0.7GB

cn0414

Note: RUNNING jobs will always show MemUsed = 0.0GB

Monitoring - Dashboard

https://hpc.nih.gov/dashboard

Student accounts: https://hpc.nih.gov/nih/student dashboard

Demo

Dashboard examples

— mem_used
— mem_alloc

864G
e
g 32
')
£
0 —_— N ANANA_— A/\AA
11:05 11:10 11:15 11:20 11:25 11:30 11:35
— threads_run
— cpus_alloc
50\\
w
3
g
11:05 11:10 11:15 11:20 11:25 11:30 11:35
D I . I R 0

140

CPUs and memory allocation are fine

Another dashboard example

— mem_used
— mem_alloc

128G
o
o
5 ic
E o
. /\/\/\/\/‘\/‘\/-\/\/\/\/\/\

10:00 10:05 10:10 10:15 10:20 10:25 10:30 10:35 10:40 10:45

— threads_run
— cpus_alloc

)
g

10:00 10:05 10:10 10:15 10:20 10:25 10:30 10:35 10:40 10:45

Recommendation: might want to increase CPU allocation to 56
141

memory

cpus

— mem_used

— mem_alloc
4G
2G
0
12:00 18:00 27 Oct 06:00 12:00
— threads_run
— cpus_alloc
2
1
12:00 18:00 27 Oct 06:00 12:00
0 0

Comment: job is running with default allocations for CPU and memory
Recommendation: if a subjob of a large swarm, try “-p 2”

Another dashboard example

— mem_used
— mem_alloc
24G
16C
o
(=]
§
e e
0
31 Aug 01 Sep 02 Sep 03 Sep 04 Sep 05 Sep
— threads_run
— cpus_alloc
w |
3
Q
o

31 Aug 01 Sep 02 Sep 03 Sep 04 Sep 05 Sep

0 | A - . Lidl |

Recommendation: should increase CPU allocation to 40

143

memory

cpus

— mem_used
— mem_alloc

8G
4G
0
13:47 13:48 13:49 13:50 13:51 13:52 13:53 13:54
— threads_run
— cpus_alloc
20
0 \
13:47 13:48 13:49 13:50 13:51 13:52 13:53 13:54

i 0

Recommendation: reduce CPU allocation

Another dashboard example

— mem_used
— mem_alloc
84C

fe
g 320
[}
£
0
18:00 18:30 19:00 19:30 20:00 20:30 21:00 21:30 22:00 22:30
— threads_run
— cpus_alloc
w
3
a ‘
o
0
18:00 18:30 19:00 19:30 20:00 20:30 21:00 21:30 22:00 22:30
() | | | L (i)

The memory use likely exceeded memory allocation

Recommendation: increase memory allocation to 250 GB. If job completes,
145 determine memory usage with ‘jobhist’, and then use that for future jobs.

memory

cpus

— mem_used

— mem_alloc
256G
128G
0 /""_'_’
02:00 04:00 06:00 08:00 10:00 12:00 14:00
— threads_run
— cpus_alloc
50
O L
02:00 04:00 06:00 08:00 10:00 12:00 14:00

e 0

Comment: CPUs badly overloaded
Recommendation: could run in less than half the memory

T

Hands-on (monitoring) %

cd /data/SUSER/hpc-classes/biowulf/bowtie
sbatch [--partition=student] --cpus-per-task=16 bowtie.bat

e Use ‘jobload —u SUSER’ to check the status of your
running job. How much memory is it using?

e After the job finishes, use ‘jobhist jobnumber’ and
find out how much memory it used.

<ﬂ> Why are my jobs pending?

* ‘freen’ shows free CPUs but not free memory

* Other jobs have higher priority (sprio)

* Nodes are reserved for higher-priority jobs
scontrol show job ######4#

squeue —-o ”“%181 %20s”

will show you the estimated start time of the
job, if known

Suggestions to speed up
scheduling of your jobs

e Use freen to check cluster status, and consider
submitting to a different partition.

e Use the smallest walltime, memory and CPU
that your jobs require.

e Submit to multiple partitions
* Use the quick queue (< 4 hr jobs) if possible.

149

Job Dependencies

biowulf% sbatch Jobl.bat
1111

biowulf% sbatch --depend=afterany:1111 Job2.bat
1112

biowulf% sjobs

[biowulf]$ sjobs

User JobId JobName Part St Reason Runtime Walltime Dependency Nodelist
teacher 1111 Jobl.bat norm R === 0:17 4:00:00 cn0035
teacher 1112 Job2.bat norm PD Dependency 0:00 4:00:00 afterany:1111

cpus running = 2

cpus queued = 1

Il
'_\

jobs running

Jjobs queued = 1

Job Dependencies

--depend=afterany (after all of the jobs have exited, with or without errors)
afterok (after all of the jobs have exited with no errors)
afternotok (after all of the jobs have exited with errors)
after (after all of the jobs have started)

IMPORTANT: Exit status = exit status of shell = exit status of last command
Use ‘set —e’ in script to exit after first failed command. e.g.

#!/bin/bash
set —e

cd /data/SUSER/some/dir

..commandl....

...command?2.....

...command2.....

i

Job Dependencies

Making several jobs dependent on a single job.

biowulf$ sbatch Jobl.bat
Or swarm —-f swarmfilel
1111

biowulf$ sbatch --depend=afterany:1111 Job2.bat
Or swarm —-f swarmfile2 --depend=afterany:1111

1112

biowulf$ sbatch --depend=afterany:1111 Job3.bat
Or swarm —-f swarmfile3 --depend=afterany:1111

1113

~ob1
N\ T

152

Job Dependencies

Making one job dependent on several other jobs

biowulf% sbatch --depend=afterany:1111:1112:1113 Job3.bat
Or swarm —-f swarmfile2 -depend=afterany:1111:1112:1113
1114

Biowulf% sjobs

User JobId JobName Part St Reason Runtime Walltime Dependency Nodelist
teacher 3996129 Jobl.bat norm R === 0:17 4:00:00 cn0035
teacher 3996143 Job2.bat norm PD Dependency 0:00 4:00:00 afterany:1111,1112,1113

cpus running = 2

cpus queued = 1
jobs running = 1
jobs queued = 1

Job Dependencies

See

https://hpc.nih.gov/docs/job dependencies.html

for examples of scripting job dependencies in
Bash, Perl, Python.

Hands-on (job dependencies)

cd /data/$USER/hpc-classes/biowulf/dependencies
sbatch Jobl.bat

(select or note down the job number)
sbatch --depend=afterany:Joblnum Job2.bat

(select or note down the job number)
sjobs

(what is the state of the second job?)

sbatch --depend=afterany:Joblnum:Job2num Job3.bat
sjobs

(does it show the dependency?)
swarm -g 2 --depend=afterany:Job3num -f swarm.cmd

155

Matlab on Biowulf

e Can be multi-threaded.
http://biowulf.nih.gov/apps/matlab.html

* License-limited: no Matlab batch jobs on cluster.
http://helixweb.nih.gov/nih/license status

Compile all Matlab code that you want to run via batch jobs
https://hpc.nih.gov/apps/matlab compiler.html

o) The MathWorks

156

Decision Point!

Multi-Node Parallel jobs
@L.J\H CC
il 1 1 1

* Primarily molecular dynamics (NAMD, CHARMM, etc)

* Distributed memory requires programming/
compiling with message-passing libraries (MPI the de

facto standard)

e Communication over network requires high-
performance interconnects to achieve good
scalability

158
steve

100 Gb/s fabric (56 Gb/s to nodes)

Low latency (more important than
bandwidth)

Bypass TCP/IP stack
Offloads CPU

.,’

2y 8.5,k

~25 km of fiber!

&»q.pyrd-h

L7 ,,z.l

1"!1 f—n

Parallel (MPI) process

Many parallel apps do better with --ntasks-per-core=1 (ignore hyperthreading)

CPU Memory CPU Memory
C <4 GBper | sbatch --partition=multinode |2*C 4 GB per
MPI --ntasks=C “p”T” MPI
rocess
process [--constraint=nodetype] E%mmdw process
——exclusive to nearest 2 if
necess.)
--ntasks-per-core=1
jobscript
C GGBper |sbatch --partition=multinode |2*C 2*G GB
MPI --ntasks=C (Lper MPI | ner MPI
process . _ process)
[-—constraint=nodetype] (roundedup | Process
——exclusive to nearest 2 if

—--mem-per-cpu=G
--ntasks-per-core=1
jobscript

necess.)

Parallel (MPI) process

Use SSLURM_NTASKS within the script
#!/bin/bash

module load meep/1.2.1/mpi/gige
cd /data/username/mydir

meme mini-drosoph.s -oc meme_out -maxsize 600000 -p SSLURM_NTASKS

OpenMPI has been built with Slurm support, so Snp need not be specified.

#!/bin/bash
this file is called meep.par.bat

module for ethernet runs
module load meep/1.2.1/mpi/gige

cd /data/SUSER/mydir
mpirun ‘'which meep-mpi’ bent_waveguide.ctl

Infiniband Jobs

All nodes in the ‘multinode’ partition are connected to FDR Infiniband

sbatch --partition=multinode
——-constraint=x2650
—-ntasks=64
—-ntasks-per-core=1
—--exclusive
jobscript

Relion

https://hpc.nih.gov/apps/relion

®0 N RELION v2.0.5: [spin1/users/susanc/relion/bench/input

File Jobs Autorun | yo| Microscopy| CTFFIND | CTFFIND4| Getf| Running|

Import Number of MPI procs: [8 ol —
Motion correction B [[D I
Submit to queue? ves al|
Manua!pi;king Queue name: [multinode \
Auto-picking

Particle extraction
Particle sorting
Subset selection
2D classification
3D classification
3D auto-refine
Movie refinement
Particle polishing
Mask creation

Join star files
Particle subtraction
Post-processing
Local resolution

Queue submit command: [shatch
Local Scratch Disk Space (200

walltime (5-00:00:00 @

Memory Per Thread[8g @

Standard submission script: [\I/Z.0.6_patched/single_cpu .sh \-

Minimum dedicated cores per node: [2

Additional arguments: |

@
®

————8

@

- Current job:|Give_alias_here

et command] | Schedule_| | Run now |

[Finished jobs

] [Running jobs

] [Input to this job

|

CtfFind/job001/

CtfFind/job002/

Scheduled jobs

] [Output from this job

CtfFind/job003/

stdout will go here; double-click this window to open stdout in a separate window

stderr will go here; double-click this window to open stderr in a separate window

Relion uses MPI and can run
multiple threads per MPI task.
Recommended: Relion GUI

Upcoming Seminar...

Relion tips and tricks, and Parallel jobs and benchmarking
Date:Jan 16, 1-3 pm

Bldg 50, Rm 1227 (next to the coffeeshop)

Mechanics and best practices for submitting RELION jobs to the
batch system from both the command line and via the RELION
GUI, as well as methods for monitoring and evaluating the
results. Scaling of parallel jobs, how to benchmark to make
effective use of your allocated resources

Serial -> Swarm : Demo

Mini-project: run Novoalign on each of a group of fastq files to align them against
the hg19 human genome

[biowulf]S$S cd serial2swarm

[biowulf]S 1s
fastqg files.tar.gz
serial.sh

make swarm.sh
make swarm2.sh

Serial -> Swarm : Demo

Factors to consider

 Number of alignments (> 4K?)

* CPUS to allocate for each alignment
* Memory required for each alignment
* Disk space required

* Time taken for each alignment

* Total time

Serial -> Swarm : Demo

First submit the serial job (or run it interactively)

[biowulf]$ cd serial2swarm
[biowulf]$ 1s

fastqg files.tar.gz
serial.sh

swarm.sh

swarm2.sh

[biowulf]$S sbatch —cpus-per-task=16 --mem=20g serial.sh

OR

[biowulf]$ sinteractive --cpus-per-task=16 —mem=20g

Serial -> Swarm : Demo

Factors to consider...

* Number of alighments (> 4K?) - 90

CPUS to allocate for each alignment — 16 or 32

Memory required for each alignment — 8 GB

Disk space required — 6.6 +90 * 0.1 =~17 GB

Time taken for each alignment: 16 min

Total time: 24 hrs for serial job

Serial -> Swarm : Demo

Modify the serial.sh script to write out a swarm command file
-> make_swarm.sh

[biowulf]$ sh make swarm.sh
[biowulf]$ swarm —f novo_swarm.sh —t 16 —g 10 --time=20:00

Total time: ~10 mins for the unpacking, + 15 mins for the swarm subjobs
=~30 mins

Serial -> Swarm : Demo

A slightly more sophisticated version: make swarm?2.sh:

* Unpacks the tar file

e Sets up a swarm command file for the novoalign swarm

e Puts the swarm logs into a subdir

* Sends swarm stderr and stout into a single file per subjob
* Sends an email when the swarm has completed

[biowulf]$ sbatch make swarm2.sh

Singularity containers:
Mobility of compute

Debian

uoinedi|ddy
uolledlddy
uolledlddy
Jayauneq Ayuejn3uis
uoiiedi|ddy
uolediddy
uoljediddy
Jayoaune Ayue|nguis

Linux Kernel Linux Kernel

Hardware Hardware

Centos 7 VM Centos 6 Compute node

172

Singularity containers:
Mobility of compute

Debian

uoinedi|ddy
uonedi|ddy
uolledlddy
Jayauneq Ayuejn3uis
uoiiedi|ddy
uoinedlddy
uoledlddy
Jayoaune Ayue|nguis

Linux Kernel Linux Kernel

Hardware Hardware

Centos 7 VM Centos 6 Compute node 173

Singularity Containers: Demo

[cloudVM]$ sudo singularity create —s 250 cowsay.app
[cloudVM]$ sudo singularity bootstrap cowsay.app cowsay.def
[cloudVM]S$./cowsay.app “This is a test”

< This is a test >

\ /_/\
\ (00)\
(_)\ \AVAN

[===-w |

|| ||
[cloudVM]$ scp cowsay.app helix.nih.gov:temp

[biowulf]$ sinteractive
[cn1234]1$ module load singularity
[cnl234]1$./cowsay.app “Running on $(hostname)”

< Running on cnl234 >

\ /\—A
\ (00)\
(_)\ AVAN

staff@hpc.nih.gov

(aka staff@helix.nih.gov, staff@biowulf.nih.gov)

175

